首页> 外文OA文献 >Robust Simultaneous Localization of Nodes and Targets in Sensor Networks Using Range-Only Measurements
【2h】

Robust Simultaneous Localization of Nodes and Targets in Sensor Networks Using Range-Only Measurements

机译:传感器网络中节点和目标的鲁棒同时定位   使用仅范围测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Simultaneous localization and tracking (SLAT) in sensor networks aims todetermine the positions of sensor nodes and a moving target in a network, givenincomplete and inaccurate range measurements between the target and each of thesensors. One of the established methods for achieving this is to iterativelymaximize a likelihood function (ML), which requires initialization with anapproximate solution to avoid convergence towards local extrema. This paperdevelops methods for handling both Gaussian and Laplacian noise, the lattermodeling the presence of outliers in some practical ranging systems thatadversely affect the performance of localization algorithms designed forGaussian noise. A modified Euclidean Distance Matrix (EDM) completion problemis solved for a block of target range measurements to approximately set upinitial sensor/target positions, and the likelihood function is theniteratively refined through Majorization-Minimization (MM). To avoid thecomputational burden of repeatedly solving increasingly large EDM problems intime-recursive operation an incremental scheme is exploited whereby a newtarget/node position is estimated from previously available node/targetlocations to set up the iterative ML initial point for the full spatialconfiguration. The above methods are first derived under Gaussian noiseassumptions, and modifications for Laplacian noise are then considered.Analytically, the main challenges to be overcome in the Laplacian case stemfrom the non-differentiability of $\ell_1$ norms that arise in the various costfunctions. Simulation results confirm that the proposed algorithmssignificantly outperform existing methods for SLAT in the presence of outliers,while offering comparable performance for Gaussian noise.
机译:传感器网络中的同时定位和跟踪(SLAT)旨在确定网络中传感器节点和移动目标的位置,前提是目标与每个传感器之间的距离测量不完整且不准确。实现此目的的已建立方法之一是迭代最大化似然函数(ML),该函数需要使用近似解进行初始化以避免收敛到局部极值。本文开发了处理高斯噪声和拉普拉斯噪声的方法,后者对某些实际测距系统中异常值的存在进行建模,这些异常影响了为高斯噪声设计的定位算法的性能。解决了一个改进的欧几里德距离矩阵(EDM)完成问题,以解决一系列目标范围测量问题,以近似设置初始传感器/目标位置,并且似然函数通过主化最小化(MM)进行迭代细化。为了避免在时间递归操作中反复解决越来越大的EDM问题的计算负担,采用了一种增量方案,从而从先前可用的节点/目标位置估计一个新的目标/节点位置,以为整个空间配置设置迭代ML初始点。上述方法首先是在高斯噪声假设下推导的,然后考虑对拉普拉斯噪声的修改。从分析上讲,在拉普拉斯案例中要克服的主要挑战来自各种成本函数中$ \ ell_1 $范数的不可微性。仿真结果证实,所提出的算法在存在异常值的情况下显着优于现有的SLAT方法,同时为高斯噪声提供了可比的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号